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Abstract. This paper presents a broad view on inductive reasoning by
embedding it in theories of epistemic states, conditionals, and belief revi-
sion. More precisely, we consider inductive reasoning as a specific case of
belief revision on epistemic states where three-valued conditionals are a
basic means for representing beliefs. We present a general framework for
inductive reasoning from conditional belief bases that also allows for tak-
ing background beliefs into account, and illustrate this by probabilistic
reasoning based on optimum entropy.
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1 Introduction

In its original sense, inductive reasoning means deriving generic knowledge from
given examples in a way that completes the example-based information concisely
to make it applicable to other situations. In this paper, we take a bit broader
view on inductive reasoning: we pursue the idea that inductive reasoning should
be able to “generate” new beliefs from given beliefs and ideally, complete the
beliefs of a human being as far as possible. This is a very common and basic
problem in the area of knowledge representation in artificial intelligence. Here,
it is usually assumed that knowledge and beliefs of a human being, or an agent,
respectively, can be represented by a knowledge base, i.e., a finite set of formulas
in a suitable logic, and that more knowledge and beliefs can be inferred from
this base. In artificial intelligence, the distinction between knowledge and beliefs
is vague, because its main goal is to model knowledge and behaviour of agents,
so knowledge often means subjective knowledge, which is very close to beliefs.
We do not want to enter this fundamental discussion here but will use the term
beliefs throughout this paper as a synonym for subjective knowledge.

So, inductive reasoning should be able to extend the beliefs of a belief base
in a non-trivial, principled way. Of course, the logic framework in which beliefs
are represented plays a crucial role here. In the simple case of propositional
logic, deduction, or more generally, a Tarski consequence operator would satisfy
the general requirements of an inductive reasoning operator, and similarly for
first-order predicate logic. Beyond classical logics, non-monotonic logics using
so-called default rules, or rules with exceptions, provide more powerful inference
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operators, prominent approaches here are Reiter’s default logic and answer set
programming. Both are symbolic and able to infer formulas from belief bases of
facts and rules. In quantitative logical settings, probability theory offers a rich
semantic framework for nonmonotonic reasoning, and the principle of maximum
entropy (MaxEnt principle) [7, 13] yields a most powerful inductive inference
operator from probabilistic belief bases. There are also popular approaches using
qualitative structures like (total) preorders, or semi-quantative methodologies
based on Spohn’s ordinal conditional functions, also called ranking functions
[17], like system Z [6] that allow for reasoning from conditional belief bases.

This paper aims at describing inductive reasoning in a broad context where
we elaborate on connections to conditionals and belief change theory, and where
we are able to distinguish clearly between background, or generic, beliefs and
evidential, or contextual, information, a feature that is listed in [3] as one of
three basic requirements a plausible exception-tolerant inference system has to
meet. We build upon previous works, in particular [9, 11], and elaborate a gen-
eral vision of inductive reasoning in the context of belief revision. While is has
been well known that nonmonotonic reasoning and belief revision are “two sides
of the same coin” [5], the focus here is on inductive reasoning as a concept that
merges techniques from both areas to bring forth a methodology in which rea-
soning and revision can interact in various ways to realise inductive reasoning
from different background beliefs and under different contextual information. A
core concept in this methodology are epistemic states which are equipped with
meta-structures supporting reasoning and revision, and beliefs are expressed by
conditionals in the first place. Note that, of course, also propositional beliefs are
covered in our approach by identifying a conditional (A|>), where > is a tautol-
ogy, with the plausible belief A. Interestingly, total preorders on possible worlds
are meta-structures that provide a solid foundation for reasoning, revision, and
conditionals, and indeed, they are a basic requirement for AGM revision [8]. So,
we build upon AGM revision but go far beyond by addressing iterative revision
and conditional revision.

The outline of the paper is as follows: We recall basic definitions and notations
in Section 2 and discuss the nature of epistemic states in Section 3, also pointing
out their connections to inductive reasoning, conditionals, and belief revision. We
also exemplify inductive reasoning and belief revision in probabilistics via the
principles of optimum entropy. Finally, we compare inductive reasoning/revision
to applying beliefs to specific situations, which we call focusing in Section 4, and
conclude in Section 5.

2 Basics and notations

The propositional language L with formulas A,B is defined in the usual way
by virtue of a finite signature Σ with atoms a, b, . . . and junctors ∧,∨, and ¬
for conjunction, disjunction, and negation, respectively. The ∧-junctor is mostly
omitted, so that AB stands for A ∧ B, and negation is usually indicated by
overlining the corresponding proposition, i.e. A means ¬A. Literals are positive
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or negated atoms. The set of all propositional interpretations over Σ is denoted
by ΩΣ . As the signature will be fixed throughout the paper, we will usually omit
the subscript and simply write Ω. Possible worlds are understood as a synonym
for interpretations, and are usually represented by a complete conjunction of the
corresponding literals, i.e., a conjunction mentioning all atoms of the signature
such that exactly those atoms are negated that are evaluated to false. Also the
satisfaction relation |= between worlds and formulas is defined in the usual way:
ω |= A iff ω evaluates A to true. In this case, we say ω is a model of A. The set of
all models of A is denoted by Mod (A). Then, A |= B for two formulas A,B ∈ L
if Mod (A) ⊆ Mod (B).

L is extended to a conditional language (L | L) by introducing a conditional
operator |: (L | L) = {(B|A) | A,B ∈ L}. (L | L) is a flat conditional language,
no nesting of conditionals is allowed. Conditionals (B|A) with antecedent (or
premise) A and consequent B are basically considered as three-valued entities
in the sense of de Finetti [2] which can be verified (ω |= AB), falsified (ω |=
AB), or simply not applicable (ω |= A) in a possible world ω. So, they have
to be interpreted within richer semantic structures such as epistemic states like
probability distributions, or ranking functions [17]. In this paper, we choose both
of these semantic frameworks to exemplify our approach.

Probability distributions in a logical environment can be identified with prob-
ability functions P : Ω → [0, 1] with

∑
ω∈Ω P (ω) = 1. The probability of a

formula A ∈ L is given by P (A) =
∑
ω|=A P (ω). Since L is finite, Ω is finite,

too, and we only need additivity instead of σ-additivity. Conditionals are inter-

preted via conditional probabilities, so that P (B|A) = P (AB)
P (A) for P (A) > 0, and

P |= (B|A) [x] iff P (A) > 0 and P (B|A) = x (x ∈ [0, 1]).

Ordinal conditional functions (OCFs), (also called ranking functions) κ :
Ω → N ∪ {∞} with κ−1(0) 6= ∅, were introduced first by Spohn [17]. They
express degrees of plausibility of propositional formulas A by specifying degrees
of disbeliefs of their negations A. More formally, we have κ(A) := min{κ(ω) |
ω |= A}, so that κ(A∨B) = min{κ(A), κ(B)}. A conditional (B|A) is accepted in
the epistemic state represented by κ, written as κ |= (B|A), iff κ(AB) < κ(AB),
i.e. iff AB is more plausible than AB.

In general, let Ψ be any epistemic state, specified by some structure that
is found appropriate to express conditional beliefs from a suitable conditional
language (L | L)

∗
, in which conditionals may be equipped with quantitative de-

grees of belief, according to the chosen framework. For instance, for probability
functions, (L | L)

∗
= (L | L)

prob
= {(B|A)[x] | A,B ∈ L, x ∈ [0, 1]}, and in qual-

itative environments, (L | L)
∗

= (L | L). Moreover, an entailment relation |= is
given between epistemic states and conditionals; basically, Ψ |= (B|A)∗ means
that (B|A)∗ is accepted in Ψ , where acceptance is defined suitably. Let E∗ = E∗Σ
denote the set of all such epistemic states using (L | L)

∗
for representation of

(conditional) beliefs. Moreover, epistemic states are considered as (epistemic)
models of sets of conditionals ∆ ⊆ (L | L)

∗
: Mod ∗(∆) = {Ψ ∈ E∗ | Ψ |= ∆}. As

usual, ∆ ⊆ (L | L)
∗

is consistent iff Mod ∗(∆) 6= ∅, i.e. iff there is an epistemic
state which is a model of ∆.
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3 Inductive reasoning based on epistemic states and
belief revision

In this section, we develop our general approach to inductive reasoning as a
special case of epistemic belief revision. Epistemic states serve as a mediator
between reasoning and revision by providing both an epistemic background for
reasoning and an ideal outcome of induction from and revision by (conditional)
belief bases. First, we discuss the semantic structures of epistemic states that
are required for this purpose; in particular, we emphasize the crucial role of
conditionals in this context. Then we present the technical realisations of our
approach on an abstract level. Finally, we elaborate on the different types of
belief and information that our approach can handle.

3.1 Epistemic states and conditionals

In this paper, in the context of inductive reasoning and belief revision, we take a
pragmatic view on epistemic states. We expect (the representation of) epistemic
states to be equipped with some meta-structures which in suitable logical frame-
works allow for performing reasoning and belief revision, and to be complete in
the sense that answers to all possible queries (in the respective) framework can
be generated, to the best of the human’s beliefs. Note that we use the term
“revision” here in a general sense, as a synonym for integrating new information
to one’s current beliefs, i.e., as a super-concept also including update [8] or fo-
cusing [3]. When the specific change operator called revision in the AGM theory
is meant, we speak of “AGM revision”, or specify this explicitly.

As a crucial feature to go beyond classical logic towards modelling of human’s
beliefs, we presuppose that epistemic states can evaluate conditionals to be ac-
cepted or not accepted. We avoid saying that a conditional is true or not in an
epistemic state because, on the one hand, conditionals are not binary but three-
valued, and, on the other hand, the understanding of conditionals in common-
sense reasoning is not truth-functional at all. To accept a conditional, humans
would expect a meaningful connection between antecedent and consequent. This
is crucial for our approach to inductive reasoning because this connection can be
used for reasoning in a way that captures human-like thinking. The basic idea
is simple: A conditional (B|A) is accepted if its verification AB is deemed to be
more plausible, or probable, than its falsification AB. The inherent connection
between antecedent and consequent is taken into regard by considering A and B
resp. A and B jointly when assessing plausibility, or probability. Beyond plain
comparison, also degrees of plausibility, or probability, can be assigned to ver-
ification and falsification so as to measure the strength of a conditional, if the
respective semantic framework allows for that.

The fundamental connection between epistemic states, conditionals, plausi-
bility, (inductive) reasoning, and belief revision on which this paper relies can
be roughly expressed by the following equivalences:

Ψ |= (B|A) iff AB ≺Ψ AB iff A |∼ ΨB iff Ψ ∗A |= B, (1)
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where Ψ is an epistemic state in E∗, �Ψ is a suitable relation expressing plau-
sibility (or probability)1, |∼ Ψ is an inference relation based on Ψ , and ∗ is an
epistemic (or iterative) revision operator that takes an epistemic state and a
proposition and returns again an epistemic state (in the sense of [1]). More gen-
erally, we assume that ∗ can also deal with much more complex beliefs given
by sets of conditionals ∆ such that Ψ ∗∆ ∈ E∗, and we also adopt the success
postulate of AGM theory here, i.e., we presuppose that Ψ ∗ ∆ |= ∆. This also
includes the case of revising by a (plausible) proposition A via identifying A with
(A|>). Equation (1) reveals that both epistemic states and conditionals are also
carriers of strategic information that become effective for reasoning and revision.
Our focus here is on the inference relation |∼ Ψ , and basing it on an epistemic
state Ψ helps clarifying formally what is understood by induction. Before we go
into more details here, we need to make explicit more clearly what we expect
from the meta-structures associated with an epistemic state.

Indeed, a purely qualitative preorder might be a suitable meta-structure that
is associated with an epistemic state. Of course, there are more sophisticated
representation frameworks, such as possibility theory, ranking functions, and
probability functions. But also modal logical frameworks seem to be good candi-
dates for representing epistemic states, or heterogeneous structures consisting of
different components (with reasonable interactions between them) might prove
useful. This is not necessarily a question of numerical or symbolic representation,
both types of frameworks can be fine.

But when it comes to numbers it should be clear that the crucial point
here is not that they may provide a richer semantics, but they definitely pro-
vide richer structures that calculations for information processing might follow.
And this makes them quite distinguished candidates for epistemic states in the
context of reasoning and belief change. It is not by accident that probability
theory with its two independent arithmetic operators (addition and multiplica-
tion) has been playing a major role here. Although AGM might have marked
the beginning of symbolic belief revision and of devising rational postulates for
belief change, performing practical belief change has been done for a much longer
time in the probabilistic framework. Presumably the first belief change operator
ever is probabilistic conditioning, and Jeffrey’s rule [14] shows a possible way
of incorporating even uncertain evidence. So, it is not for the numbers that we
should care about probability theory but for the rich arithmetic structure that
provides a powerful apparatus to express and process information (cf. also [14]).
Via the multiplication operator, (conditional) independencies (and hence mono-
tonic inference behaviour) can be expressed, and its inverse operator, division,
allows to easily transform one distribution into another at the occurrence of new
information via conditioning. Furthermore, the addition operator takes care of
disjunctive propositional information, e.g., to allow for reasoning by cases. Hav-
ing once adopted such basic techniques, information processing becomes easy.

1 Note that A ≺Ψ B iff A �Ψ B and not B �Ψ A
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3.2 Inductive reasoning and belief revision

If we understand inductive reasoning as completing partial beliefs (as specified
in a belief base ∆) as best as possible, then its result should be an epistemic
state Ψ∆:

Ψ∆ = ind(∆), (2)

where ind is some inductive reasoning mechanism; we also say that ∆ is induc-
tively represented by Ψ via ind, or that ∆ inductively generates Ψ . For instance,
∆ may be a set of conditionals, and ind might be specified by system Z [6], or
c-representations [10], associating to each consistent set of conditionals a rank-
ing function [17]. Inductive reasoning from ∆ is then implemented by reasoning
from Ψ = ind(∆) via the conditionals being accepted in Ψ . That is, ind realises
model-based inductive reasoning.

But this cannot be the end of the story. The mind of a human being is always
evolving and changing by learning, or receiving new information I in general,
where I can just be a fact, more complex contextual information also including
conditionals (e.g., when we enter a new country, different compliance rules ap-
ply), or even trigger some deeper learning processes. Starting a new inductive
reasoning process each time when we receive new information would make our
beliefs incoherent, Ψ = ind(∆) and Ψ ′ = ind(I) might be completely unrelated
(except for that they have been built up by the same inductive reasoning for-
malism). Integrating new information I into existing beliefs represented by an
epistemic state Ψ is exactly the task of (epistemic or iterated) belief revision [1],
returning a new epistemic state Ψ ′ after revising Ψ by I:

Ψ∆ ∗ I = ind(∆) ∗ I = Ψ ′ (3)

Note that we use ∗ here in a generic sense as a placeholder for a suitable change
operator. Regarding that Ψ∆ = ind(∆) has been built up inductively from a belief
base ∆, and that also I will also be only partial information on some current
context usually, the following questions naturally arise immediately: How do ind
and ∗ interact? What (maybe completely different) roles do Ψ∆, ∆ and I play
in this scenario?

We first discuss the second question by analysing different qualities of be-
liefs with respect to the roles they play in the reasoning process. Roughly, we
can distinguish between background, or generic, and evidential, or contextual
knowledge, as well as between explicit and implicit beliefs. From background or
generic knowledge, the agent takes beliefs which hold in general and of which
she can make use of in different situations. For instance, the current beliefs of an
agent getting up on a usual Monday morning might be different from those on
a usual Sunday, but presumably his generic background has not changed much.
The evidential resp. contextual information I she receives might include that
it is Monday and raining, and that due to new construction areas she has to
take some detours when going to work. We prefer the attribute “contextual”
to “evidential” in the following, since this information may relate not only to a
specific situation and can be much more complex than some evidential facts. For
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instance, the temporal scope of context may be one hour or one week, the scope
may refer to a specific house or to a whole country, or it may contain information
on abstract contexts, such as holidays or working environments. Assuming that
Ψ∆ = ind(∆) expresses background beliefs, incorporating contextual informa-
tion cannot be done simply via the “union” of Ψ∆ and I (whatever this might
be), or by the union of ∆ and I because this would ignore the different natures
of background beliefs and contextual information. The agent’s new epistemic
state should rather arise from the adaptation of Ψ∆ to contextual information.
This is expressed by (3), but only as a base case when we start reasoning from
a belief base including our core background beliefs. However, this process must
be iterative, i.e., Ψ = Ψ∆ may more generally be the result of such a revision
Ψ = Ψprior ∗ Iprior, or new information I ′ arrives that triggers a new change
process (Ψ∆ ∗ I) ∗ I ′, so that (3) evolves to the iterative change problem

(Ψ∆ ∗ I) ∗ I ′ = (ind(∆) ∗ I) ∗ I ′. (4)

And here, three essentially different reasoning resp. revision scenarios are possible
(note that the ∗-operators are just placeholders to be specified adequately):

– First, the context to which I refers has evolved, and I ′ is information on
this new context for which, however, I is still relevant. This scenario is often
referred to as updating. Then the two ∗-operators in (4) would be of the
same type, and Ψ∆ ∗ I would be changed to (Ψ∆ ∗ I) ∗ I ′. A modification of
this scenario applies if the contexts to which I and I ′ refer are completely
unrelated, but the agent uses the same background beliefs Ψ∆ for reasoning,
then we would end up with Ψ∆ ∗ I ′.

– Second, I ′ refers to the same context as I. In this case, I and I ′ should be
considered to be on the same level, and we would obtain Ψ∆ ∗ (I ∪ I ′). This
is a typical case of belief revision in the AGM-sense.

– Third, I ′ enriches or modifies background beliefs, i.e., it affects the basis
from which reasoning with the information I is performed. This is what
happens when learning. In the first case, if I ′ is fully compatible with ∆,
ind(∆ ∪ I ′) ∗ I would be a proper solution. If I ′ contradicts (parts of) ∆,
then Ψ∆ ∗ I ′ = ind(∆) ∗ I ′ would provide suitable background beliefs, and
(ind(∆) ∗ I ′) ∗ I would be the result of the revision problem.

Therefore, we argue that the distinction between revision and update [8], and
also the relation between belief change and learning is not just a technical issue,
but has to be made on a conceptual and modelling level. The involved revision
operators ∗ might respect such differences, but from the discussion above it be-
comes clear that also differences can be made by different ways of applying one
and the same revision operator ∗ in different scenarios, also involving inductive
reasoning. While (3) claims that involving belief revision is necessary for a coher-
ent perspective of inductive reasoning, the third of the cases elaborated above
shows how inductive reasoning can affect belief revision: Changing ind(∆) to
ind(∆ ∪ I ′) makes the revision of background beliefs possible. For more formal
investigations of the differences between AGM-like revision and update, and for
a reconciliation with AGM theory, please see [11].
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Elaborating further on this intimate connection between inductive reasoning
and belief revision, we might even envisage inductive reasoning involving back-
ground beliefs expressed by an epistemic state Ψbk, i.e., Ψ = indΨbk

(∆), and then
inductive reasoning from ∆ might be realised by revision:

Ψ = indΨbk
(∆) = Ψbk ∗∆. (5)

And when no background beliefs are available or relevant, we assume some uni-
form epistemic state Ψu as a starting point:

ind = indΨu
. (6)

This implements inductive reasoning from epistemic states thoroughly via epis-
temic belief revision because this approach yields

Ψ∆ = ind(∆) = Ψu ∗∆. (7)

This means that each epistemic revision operator that is able to handle complex
information ∆ induces an inductive inference operator. This makes inductive rea-
soning coherent, as explained above, and allows us to embed inductive reasoning
in a richer methodology.

This embedding has two further important advantages: First, revision method-
ologies may yield immediately mechanisms of inductive reasoning and suitable
quality criteria. Second, splitting up inductive reasoning clearly into its induc-
tive mechanism, its involved background beliefs, and context-based beliefs makes
formalisms more explicit and more broadly (and flexibly) applicable. However,
only very few approaches to epistemic revision with sets of conditionals exist; in
Section 3.4, we briefly present the principle of minimum cross-entropy for prob-
abilities as a suitable methodology on the base of which inductive reasoning in
the respective semantic frameworks can be realised in a straightforward way.

3.3 Different types of beliefs

Our approach to inductive reasoning via belief revision sketched above also dis-
tinguishes between explicit beliefs in a belief base, and implicit beliefs derivable
in an epistemic state. The necessity of such a distinction is quite obvious in a
belief change scenario, since implicit resp. derived beliefs are more easily changed
than explicit beliefs. Having to give up explicit beliefs not only needs more effort,
but it is quite a different thing. Formally, if Ψ∆ = ind(∆), and the new informa-
tion I is in conflict with ∆, e.g., ∆ ∪ I is inconsistent, then we are still able to
perform revision in the sense of updating via Ψ∆ ∗ I = ind(∆) ∗ I, whereas revi-
sion as genuine revision in the AGM sense via ind(∆∪I) would not be possible.
If the agent comes to know that an explicit belief is (presumably) false, she might
react more reluctant to incorporate it, trying perhaps to collect more evidence
etc. If finally, she is ready to believe the new information, there are three pos-
sibilities: In the first case, the new information I might contradict the derived
beliefs in Ψ∆ but is nevertheless consistent with ∆, AGM revision ind(∆ ∪ I)
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would be a suitable option. In the second case, the agent acknowledges that her
previous explicit beliefs were erroneous before, in which case she has to perform
a proper belief base change by applying merging techniques which are able to
resolve conflicts2. In the third case, the agent admits that the current context
has changed, and she has to adapt her beliefs to these changes, in which case
one would find some updating process appropriate. Summarizing, our approach
to inductive reasoning is able to deal with (and properly distinguish between)
generic, background and contextual beliefs, on the one hand side, and explicit
and implicit beliefs, on the other. This is possible by considering inductive rea-
soning within belief revision frameworks, and provides perfect grounds for a rich
methodology that ensures coherence over different reasoning scenarios.

Furthermore, we mention an axiom for iterated revision that is particularly
suitable to express coherence in the above sense, but which has been considered
only in very few of the current belief revision frameworks and has been introduced
under the name Coherence in [9] where it plays a crucial role for characterizing
the principle of minimum cross entropy, but actually goes back to [16]:

(Coherence) Ψ ∗ (∆1 ∪∆2) = (Ψ ∗∆1) ∗ (∆1 ∪∆2).

(Coherence) demands that adjusting any intermediate epistemic state Ψ ∗ ∆1

to the full information ∆1 ∪ ∆2 should result in the same epistemic state as
adjusting Ψ by ∆1 ∪∆2 in one step. The rationale behind this axiom is that if
the new information drops in in parts, changing any intermediate state of belief
by the full information should result unambigously in a final belief state. So, it
guarantees the change process to be logically coherent.

Note that (Coherence) does not claim that (Ψ∗∆1)∗∆2 and (Ψ∗∆1)∗(∆1∪∆2)
are the same, just to the contrary – these two revised epistemic states will
be expected to differ in general, because the first is not supposed to maintain
prior contextual information, ∆1, whereas the second should do so, according
to success. However, (Coherence) can help ensuring independence of parts of
the history that serves as background beliefs for inductive reasoning. In the
situation described by (5) where we reason inductively from ∆ with background
beliefs Ψbk, imagine that we still are aware of the last conditional information
∆0 that shaped Ψbk, i.e., Ψbk = Ψ1 ∗∆0, which would be mandatory to be able
to distinguish among the different scenarios sketched above. But in general, it
will be the case that Ψbk and ∆0 do not determine Ψ1 uniquely, so that there
may be a different Ψ2 satifying also Ψbk = Ψ1 ∗∆0 = Ψ2 ∗∆0. For updating Ψbk,
this is irrelevant because only Ψbk matters. However, for AGM-like revision, we
would like to compute Ψbk ∗∆ = Ψ1 ∗ (∆0 ∪∆), but also Ψ2 ∗ (∆0 ∪∆) would be
a suitable candidate. Here (Coherence) guarantees that the resulting epistemic
state would be the same:

Ψ1 ∗ (∆0 ∪∆) = (Ψ1 ∗∆0) ∗ (∆0 ∪∆) = (Ψ2 ∗∆0) ∗ (∆0 ∪∆) = Ψ2 ∗ (∆0 ∪∆).

2 Note that this would also be possible in our general framework, however, we leave
this for future work here to not distract from the main focus of this paper
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This makes clear that in our conceptual framework of inductive reasoning in
the context of belief revision, integrating background beliefs and different pieces
of information can be done in different but coherent ways. This means, having to
deal with different pieces of information, the crucial question is not whether one
information is more recent than others, but which pieces of information should
be considered to be on the same level, i.e., belonging to the same type of belief
(background vs. contextual), or referring to the same context (which may, but
is not restricted to be, of temporal type). Basically, pieces of information on the
same level are assumed to be compatible with one another, so simple set union
will return a consistent set of formulas (please also see footnote 2). Pieces of
information on different levels do not have to be consistent, here latter, or more
reliable ones may override those on previous levels.

3.4 Reasoning on optimum entropy and with OCFs

We briefly illustrate the concepts presented in this section by inductive reasoning
and revision with probabilities and ranking functions.

The principles of maximum entropy and minimum cross-entropy are power-
ful methodologies for inductive reasoning and belief revision in probabilistics.
Due to lack of space, we cannot recall them fully here but refer in particular
to [13, 9, 10]. For a (consistent) set of probabilistic conditionals ∆, the prin-
ciple of maximum entropy selects the unique probability distribution ME(∆)
with maximum entropy, and if prior information P is given, then the principle
of minimum cross-entropy selects (under mild consistency conditions) a unique
probability distribution P ∗ME ∆ that is a model of ∆ and has minimal infor-
mation distance to P , thus realizing probabilistic belief revision. The crucial
equation for understanding and analyzing ME-revision is given by

P ∗ME ∆(ω) = α0P (ω)
∏

16i6n
ω|=AiBi

α1−xi
i

∏
16i6n

ω|=AiBi

α−xi
i , (8)

with the αi’s being exponentials of the Lagrange multipliers, one for each condi-
tional in ∆, and have to be chosen properly to ensure that P ∗ME ∆ satisfies all
conditionals in ∆ with the associated probabilities. α0 is simply a normalizing
factor. For a complete axiomatization of the principle of minimum cross-entropy
within the scope of probabilistic revision by conditional-logical postulates, see
[9]. If Pu is a suitable uniform distribution, both ME-principles are related via
ME(∆) = Pu ∗ME ∆. This means that ME is an inductive reasoning mecha-
nism derived from a belief revision operator in the sense of (7), and ∗ME realises
inductive reasoning from general background beliefs P in the sense of (5). Let
us further note that ME-revision also satisfies (Coherence) [16]. Hence the ME-
methodology is quite a perfect example to illustrate all concepts and relationships
presented in this paper in a probabilistic framework.

Transferring the basic ideas underlying the ME-principles to the framework
of ranking functions brings us to c-revisions and c-representations [10]. Formally,
the c-revision methodology provides approaches to revision of ranking functions
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κ by consistent sets ∆ of conditionals, and inductive reasoning from conditional
belief bases (also by taking background beliefs into account) according to (7)
and (5) via the following schema:

κ ∗c ∆(ω) = κ0 + κ(ω) +
∑

16i6n

ω|=AiBi

κ−i (9)

where the parameters κ−i have to be chosen suitably to ensure that κ ∗c∆ |= ∆,
and κ0 is a normalization factor. A c-representation of ∆ is obtained from that
by choosing the uniform prior κu(ω) = 0 for all ω ∈ Ω. C-revisions satisfy (Co-
herence), but only when considered as a family of revisions (for more technical
details, please see [12]).

4 Focusing and Conditioning

Focusing means applying generic knowledge to a reference class appropriate to
describe the context of interest (cf. [3]). As this reference classe is assumed to be
specified by factual information and indicates a shift in context (to that reference
class), focusing should be performed by updating the current epistemic state to
factual information which is certain, i.e. with probability 1. It can easily be shown
that for ME-change, updating with such information results in conditioning the
prior epistemic state, and indeed, conditioning is usually considered to be the
proper operation for focusing.

However, in a probabilistic setting, conditioning has been used for revision,
too [4, 3]. So revision and focusing are often supposed to coincide in the frame-
work of Bayesian probabilities though they differ conceptually: revision is not
only applying knowledge, but means incorporating a new constraint so as to
change knowledge. Due to this conceptual mismatch, paradoxes have been ob-
served. Gärdenfors investigated imaging as another proper probabilistic change
operation [4]. Dubois and Prade argued that the assumption of having a uniquely
determined probability distribution to represent the available knowledge at best
is responsible for that flaw [3]).

However, we will show that in our framework, it is easily possible to treat
revision as different from focusing without giving up the assumption of having
a single, distinguished epistemic state as a base for inferences. The following
proposition reveals the difference between revision by a certain information A,
and focusing to A by conditioning; the proofs are straightforward using (8) but
tedious.

Proposition 1. Let P be a distribution, ∆ ⊆ (L | L)
prob

a (P -consistent3) set
of probabilistic conditionals, and suppose A[1] to be a certain probabilistic fact.

(i) Focussing on A, i.e., updating P with A[1] is done by ME-revision and yields
P ∗ME {A[1]} = P (·|A); in particular, (P ∗ME∆)∗MEA[1] = (P ∗ME∆)(·|A).

3 ∆ is P -consistent if there is a distribution Q with Q |= ∆ and Q(ω) = 0 whenever
P (ω) = 0.



Gabriele Kern-Isberner

(ii) AGM-revising P ∗ME∆ with A[1] yields P ∗ME (∆∪{A[1]}) = P (·|A)∗ME∆.

We illustrate that the correct usage of focusing and revision in the probabilis-
tic framework helps resolving well-known paradoxes by considering an example
that motivated the application of alternative approaches to uncertain reasoning
like Dempster-Shafer theory [15].

Example 1. In a well-known example, Peter, Paul, and Mary are killers one of
whom has been hired by Big Boss to commit a murder. Police Inspector Smith
knows that Big Boss has first tossed a coin to decide whether it should be a male
(Peter or Paul), or a female (Mary), but he does not know about the outcome
of the tossing. So, initially, the explicit beliefs of Smith are given by ∆1 =
{(Peter∨Paul)[0.5],Mary[0.5]}, and his initial epistemic state can be calculated
via the principle of maximum entropy: P1 = ME (∆1). It is straightforward to
see that P1(Mary) = 0.5, P1(Paul) = P1(Peter) = 0.25.

Now Smith comes to know that Peter has been arrested right before the
murder, so he could not have committed the crime. This piece of information
can be encoded by R2 = {¬Peter[1]}. When incorporating ∆2 by an update
operation (which amounts to a conditioning here), the new epistemic state would
be P2 = P1(·|¬Peter), and hence the new beliefs concerning Paul and Mary
would be P2(Mary) = 2

3 , and P2(Paul) = 1
3 . This seems to be unintuitive, as

it gives undue precedence to Mary. However, this flaw is neither an argument
against maximum entropy, nor against probability theory in general, but caused
by the confusion between focusing and revision. The correct change operation
here is revision as simultaneous change, which amounts to computing P3 =
ME (∆1∪∆2). Now, in fact, we obtain P3(Mary) = P3(Paul) = 0.5, as expected.

A statement analogical to Proposition 1 holds for focussing and AGM-revision,
in particular c-revision, for OCFs.

5 Conclusion

The aim of this paper is to describe inductive reasoning from conditional belief
bases in a rich epistemic framework that takes epistemic states and conditionals
as basic encodings of information. Allowing inductive reasoning from background
beliefs (in the form of belief bases or epistemic states) leads us naturally to
consider also belief revision. More boldly, our main claim here is that inductive
reasoning can be considered as a special case of epistemic belief revision. In this
way, a coherent and homogeneous approach to inductive reasoning is possible
that allows us to realize different forms of inductive reasoning via AGM-like
revision, updating, and focusing. We presented a general, abstract framework
based on epistemic states and conditionals, and illustrated our ideas both for
ordinal and probabilistic environments. We also showed how commonly known
paradoxes can be avoided in our framework.
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