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Abstract. In this paper we recover some traditional results in geome-
try of probability distributions, and in particular the convergence of the
alternating minimisation procedure, without actually referring to proba-
bility distributions. We will do this by discussing a new general concept
of two types of points; admissible and agreeable, inspired by multi–agent
uncertain reasoning. On one hand, this presents a unique opportunity
to make traditional results accessible to a wider audience as no prior
knowledge of the topic is required. On the other hand, it allows us to
contemplate how a group of humans would seek an agreement without
necessarily expressing it in terms of probability distributions, focusing
instead on properties. Finally, we recover the traditional setting of prob-
ability distributions, including cross–entropy, in the appendix.
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1 Intuition

“A point is that which has no part.”

Euclid of Alexandria, [11]

Whenever we build a mathematical theory we need to consult our intuition.
Should we not do it we may end up building a theory that little resembles the
world we are living in, and which is equally inapplicable. In this section, we will
start building an intuitive framework that deals with information. We will need
to confer with our intuition in the form of our experience on how information is
used and how conflicting statements are dealt with.

Our first notion will be indeed the point. As in the Euclidean definition that
starts this section, it is a building block that is further indivisible. Our point is,
however, introduced to represent information rather than the position in a three–
dimensional world. We think of several different opinions on a particular matter;
each different opinion can be represented as a point. We are not concerned with
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what further constitutes the opinion and we disregard any knowledge concerning
the origins of the opinion, it is simply an indivisible entity to us.

The points, which we have just introduced, can have any of the two following
properties in this paper:

1. They can represent an admissible collective point of view of a given group
of humans or collection of information sources, shortly called simply an ad-
missible point,

2. and to represent an agreement of the group, shortly called an agreeable point.

Now, intuitively, an admissible point is meant only to represent the state of col-
lective knowledge, individual members of the group could well disagree and there
could be no, what we call, agreeable point. This collective framework of uncere-
tain reasoning was pioneered by Wilmers [15], and we are directly extending it
here. An illustration is in Figure 1, all figures can be found in the appendix.

Example. To illustrate, one scientific study could suggest that the proportion
of people that develop a particular disease is somewhere between 10% and 30%
while the other study could indicate that this value is between 20% and 50%.
One way of constructing a point is to specify an ordered pair of individually
admissible proportions such as (25%, 40%), where the first number is admissible
according to the first study and the second number is admissible according to the
second study. Agreeable admissible points in this particular representation will be
the points (x, x), x ∈ [20%, 30%], clearly representing the proportions on which
the studies agree at the same time. There are other agreeable points that are not
admissible, such as (35%, 35%), (50%, 50%), (0%, 0%) and so on.

The example above illustrates the kind of details we will need to go into before
the intuitive concept that we develop here can be applied, but at this stage
working out the details would only obstruct the general idea and the intuition
behind it. We have therefore moved all technical examples and relevant references
to the appendix. Here we only point out that our illustration fits Paris–Vencovská
framework of uncertain reasoning as in [13].

The previous example was also straightforward enough in establishing agree-
able points, but the following questions naturally arise:

1. What shall we do if admissible points contain no agreeable points?
2. How should we measure some kind of distance between an admissible point

and an agreeable point in an effort to find a closest point of agreement?
3. Which intuitive principles such a notion of distance should satisfy?

We shall find the answers in this paper.

2 Information Divergence

In the previous section we saw the need for expressing some sort of information
distance between two points, but we would not want to require much from this
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notion at this early stage. In particular, there is no apparent need for it to be a
metric.

A metric is a symmetric distance between a pair of elements x,y of a set. It
assigns to each pair (x,y) a non–negative real number d(x,y), this number is
independent on the order of elements, it is zero if and only if the elements are
identical and it satisfies the triangular inequality; d(x, z) ≤ d(x,y) + d(y, z).

Instead, we will consider a much weaker notion of information divergence, a
mapping D that assigns an ordered pair of points a non–negative real number;

D(x,y) ≥ 0.

We say that D(x,y) is the D information divergence from x to y. Since the
symmetry is not required, the D information divergence from y to x could be
different and therefore we do not call it a distance but a divergence.

Now, let W be the set of all admissible points and V the set of agreeable
points. Throughout the paper we will assume that they are both non–empty. Let
∆(W ) be the set of all those agreeable points v that are such that D(v,w) is
minimal subject to v ∈ V and w ∈ W . In other words, we are looking here at
all pairs (v,w), v ∈ V and w ∈W , establishing the minimal D(v,w) if it exits,
and collecting all those v from V that give this minimal divergence into ∆(W ).
The purpose of the set ∆(W ) is to determine those agreeable points that have
the smallest D information divergence from them to admissible points and to
use them as representatives of the set of all admissible points W . In other words,
∆(W ) ⊆ V represents W ; it is the agreement of a group of humans or collection
of information sources. We will call the points in ∆(W ) representative points.
See Figure 2 for an illustration.

Intuitively, if W∩V 6= ∅; i.e., there are agreeable admissible points, we expect
the representation ∆(W ) of W to be formed only by agreeable admissible points,
although this ituition is not universally accepted [14]. The following property of
D guarantees that this is the case:

Property 1 (Consistency). Let v and w be any two points. Then

D(v,w) = 0 if and only if v = w.

Observation 1. Let D be such that it satisfies the consistency property. If there
are agreeable admissible points then agreeable admissible points form all repre-
sentative points;

if W ∩ V 6= ∅ then ∆(W ) = W ∩ V .

Proof. First, if v ∈ W ∩ V then by the consistency property D(v,v) = 0.
We conclude that v ∈ ∆(W ) as v minimises D(v,w) subject to v ∈ V and
w ∈ W . (Note that D(v,v) cannot be smaller than zero by the definition.)
Hence ∆(W ) ⊇W ∩ V .

Second, assume that W ∩ V 6= ∅ and v ∈ ∆(W ) ⊆ V is such that v 6∈ W .
Then D(v,w) = 0 for some w ∈ W , which by the consistency principle gives
v = w. Hence ∆(W ) ⊆W ∩ V . ut
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The consistency property above is formulated more strongly than it is needed
to prove Observation 1. Rather than considering any points v and w, we could
have required it only for v ∈ V and w ∈ W . The reason for our choice is that
we will need the stronger version later on.

In contrast, if v = w implies D(v,w) = 0 but there are v 6= w such that
D(v,w) = 0, it could be possible to have W ∩ V 6= ∅ and ∆(W ) ' W ∩ V , so
further weakening of the consistency property would be undesirable.

3 Projections

Our notion of an information divergence is too general to have further useful
properties on its own; in particular, if there are no agreeable admissible points
we cannot even say that the set of all representative points is always non–empty.
We will keep adding assumptions concerning both D and sets of agreeable and
admissible points V and W based on what appears rational to us in the context
of information geometry. At some point, however, we will need to show that the
list of our assumptions is consistent; we will need to find a particular information
divergence, and sets W and V that satisfy all those assumptions.

In this section we will require D to have the following properties:

Property 2 (Projection). Assume that v is an agreeable point. Then there is
a unique admissible point w such that D(v,w) is minimal subject to w ∈W .

The unique point w from the previous property will be denoted πW (v); it is the
D–projection of v into W . An illustration is in Figure 3.

Property 3 (Conjugated Projection). Assume that w is an admissible point.
Then there is a unique agreeable point v such that D(v,w) is minimal subject
to v ∈ V .

The unique point w from the previous property will be denoted π̂V (w); it is the
conjugated D–projection of w into V . An illustration is in Figure 4.

Intuitively, if we present a group of humans with a point of agreement, we
expect them to find a single point among those they consider admissible as their
personal opinion in view of the presented agreement. On the other hand, we
should be able to establish agreement regardless on which specific admissible
point the group presents to us.

Taking this further, the following process taken from [1] and inspired by an
earlier version of [15] could resemble a real life agreement seeking:

Example. Consider a group of humans with their set of admissible points W .
The group elects a committee whose task is to find a single agreeable point from
the set V . Naturally, the committee presents the group with their personal opin-
ion or any other provisional starting point v0 that they see appropriate. The
group then decides which point from those they consider admissible must have
been the case to reach the conclusion suggested by the committee; they project
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the committee’s point to their set W . At this stage, being present with a single
admissible point, it is now possible for the committee to determine the conju-
gated projection of that admissible point to the set V ; finding the corresponding
agreeable point v1 of the group. Now, it is not at all necessary that v1 = v0.
Nevertheless, the committee would be compelled to iterate the whole process until
the above process stabilises on a single agreeable point.

The points of interest from the previous example, although at this stage it is not
clear if they even exist, will be called fixed points. More explicitly, an agreeable
point v ∈ V is a fixed point if

π̂V (πW (v)) = v.

The set of all fixed points will be denoted Θ(W ). See Figure 5 for an illustration.
The example above is of course only one possible way of finding an agreement,

although we argue that it is a rational one. An interesting question is how does
this way relate to previously suggested information divergence D minimisation,
which yields the set ∆(W ). There could be something:

Observation 2. Let D be such that it satisfies the projection and conjugated
projection properties. Then representative points are also fixed points;

∆(W ) ⊆ Θ(W ).

Proof. Let v ∈ ∆(W ) and let d be the smallest D information divergence
D(v,w) subject to v ∈ V and w ∈ W . Such a real number exists by the
definition of ∆(W ) and note that in this paper we always assume that both V
and W are non–empty.

Clearly, D(v, πW (v)) ≥ d. Now assume that D(v, πW (v)) > d so there must
be w ∈W such that D(v, πW (v)) > D(v,w). But this contradicts the definition
of πW (v). So it must be that

D(v, πW (v)) = d.

Now, assume that π̂V (πW (v)) 6= v. Nevertheless,

D(π̂V (πW (v)), πW (v)) = D(v, πW (v)) = d,

otherwise we would contradict the definition of π̂V (πW (v)). Finally, the equation
above implies that both v and π̂V (πW (v)) minimise D(v, πW (v)) subject to
v ∈ V . Such a minimiser is, however, by the conjugated projection property
required to be unique, thus

π̂V (πW (v)) = v.

ut

It seems that after concluding this section we have more questions than answers:
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1. What properties should we require from an information divergence D and
sets W , V so that ∆(W ) = Θ(W )? Is it even possible?

2. If we iterate the process from the example above; i.e., create a sequence
{vi}∞i=0, where vi+1 = π̂V (πW (vi)), what properties should we require from
the information divergence D and sets W and V so that we find an agreement
in that way?

We shall find answers in the following sections.

4 Pythagorean Properties

The following property informally says that a group might establish the diver-
gence of their agreement to an admissible point by adding their divergence to
the projection of that point to the set of agreeable points and the divergence of
the projection to the point concerned.

Property 4 (Pythagorean for Agreeable Points). Let v ∈ V be an agree-
able point and w ∈W be an admissible point. Then

D(v, π̂V (w)) +D(π̂V (w),w) = D(v,w).

This property is counter–intuitive from the point of view of the classical
Euclidean distance. Although it does not violate the triangular inequality, it
is certainly not a property of a distance we are used to. On the other hand, it
quite closely resembles how squares taken over the sides of a right–angled triangle
behave in the Euclidean geometry (hence the name), see Figures 7 and 8 for an
illustration.

Intuitively, using an analogy from the Euclidean geometry, we expect the
set of agreeable points in respect to the conjugated D–projection to behave as
a flat space into which we projects admissible points. This is quite a strong
requirement, we would not want to be so harsh on the set of admissible points.
The following property will make admissible points to behave as a convex set.

Property 5 (Pythagorean for Admissible Points). Let v ∈ V be an agree-
able point and w ∈W be and admissible point. Then

D(v, πW (v)) +D(πW (v),w) ≤ D(v,w).

This property is similar to the Pythagorean property for agreeable points but
it is weaker. And if the inequality from the statement actually holds in some
case for a particular D then this information divergence D is not a metric. See
Figures 9 and 10 for an illustration.

The following observation gives us something that also follows from the con-
sistency property on Page , but without assuming it.

Observation 3. Let D be such that it satisfies the projection and conjugated
projection properties, and the Pythagorean properties for agreeable and admissi-
ble points. If v ∈ V is a fixed point then D(v,v) = 0 and D(πW (v), πW (v)) = 0.
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Proof. By the Pythagorean property for agreeable points

D(v, π̂V (πW (v))) +D(π̂V (πW (v)), πW (v)) = D(v, πW (v)).

But since v is fixed the above is equivalent to

D(v,v) +D(v, πW (v)) = D(v, πW (v)),

which is possible only if D(v,v) = 0.
Similarly, by the Pythagorean property for admissible points

D(v, πW (v)) +D(πW (v), πW (v)) ≤ D(v, πW (v)),

which is possible, due to non–negativity of information divergence, only if

D(πW (v), πW (v)) = 0.

ut

5 Fixed Points are Representative Points

The following natural property says that the D information divergence from
one admissible point to another admissible point should not be smaller than
the D information divergence from and to the corresponding agreeable points.
Intuitively, seeking an agreement should not take us further apart, see Figure 11.

Property 6 (Convexity). Let w,u ∈W . Then

D(w,u) ≥ D(π̂V (w), π̂V (u)).

We have now all the tools sufficient to prove that fixed points are also represen-
tative points, if there is actually a representative point.

Theorem 1 (Characterisation). Let D be such that it satisfies the projection
and conjugated projection properties, the Pythagorean properties for both admis-
sible and agreeable points, and the convexity property. If a representative point
exists then the set of fixed points and the set of representative points are equal;

∆(W ) = Θ(W ).

Proof. By Observation 2 on Page we already know that ∆(W ) ⊆ Θ(W ) so it is
sufficient to show that ∆(W ) ⊇ Θ(W ).

Because we assumed that a representative point exists and we already know
that every representative point is also a fixed point, we may assume that π̂V (w) ∈
∆(W ), for some w ∈ W . To make the argument, we now also assume that
v ∈ Θ(W ) and show that v ∈ ∆(W ) in what follows.

The Pythagorean property for representative points

D(v, π̂V (w)) +D(π̂V (w),w) = D(v,w)
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and the Pythagorean property for admissible points

D(v,w) ≥ D(v, πW (v)) +D(πW (v),w)

give

D(v, π̂V (w)) +D(π̂V (w),w) ≥ D(v, πW (v)) +D(πW (v),w), (1)

see Figure 12 for an illustration.
Since v is a fixed point and hence v = π̂V (πW (v)), by the convexity property

D(v, π̂V (w)) ≤ D(πW (v),w). (2)

Now, Equations 1 and 2 give

D(π̂V (w),w) ≥ D(v, πW (v)).

Since w ∈ ∆(W ) the above must hold with equality and therefore v ∈ ∆(W ).
ut

The proof above was based on ideas from [2].

Observation 4. Let D be such that it satisfies the projection and conjugated
projection properties, the Pythagorean properties for both admissible and agree-
able points, and the convexity property. Let v,u ∈ ∆(W ) = Θ(W ). Then

D(v,u) = D(πW (v), πW (u)).

Proof. Looking at (1) in the previous proof, which employed the identical as-
sumptions, and taking u = π̂V (w), we obtain

D(v,u) +D(u,w) ≥ D(v, πW (v)) +D(πW (v),w).

Since v,u ∈ ∆(W ) we have D(u,w) = D(v, πW (v)) and the above becomes

D(v,u) ≥ D(πW (v),w).

Finally, by the convexity property, the above is possible only with the equality.
ut

6 Enter Metric Topology

“Every reasonable non–pathological space in topology will turn out to
be a metric space. On the other hand, developments (. . . ) showed there
was a need to study a more general class of spaces than merely Euclidean
spaces.”

Donal W. Kahn, [12]
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Thus far we have avoided the need to introduce any topological structure
on the set of all points, but this is going to change in this section. First, let us
finally introduce a symbol for the set of points here considered as X. Then, let
us equip the set of points X with a metric d(x,y), where x and y are any points.
Recall that the notion of metric was discussed on Page .

We say that a sequence {vi}∞i=1 of points converges to a point v if for any
real number ε > 0 there is j such that d(vi,v) < ε for all i > j. We call such a
v a limit point.

What we need to establish now is a connection between the metric d and the
divergence D, which is a mapping from a Cartesian product X ×X to R;

D : X ×X → R.

Therefore, we need to have a product metric

dp((x1,y1), (x2,y2)) =
(

[d(x1,x2)]p + [d(y1,y2)]p
) 1

p

,

where 1 ≤ p <∞, in place. Then we can define that a mapping f : X ×X → R
is continuous, if for any real number ε > 0 there is δ > 0 such that whenever
dp((x1,y1), (x2,y2)) < δ we have |f(x1,y1)−f(x2,y2)| < ε. The last expression
is just the standard metric on R, and our definition follows the usual definition of
continuity of a mapping between metric spaces. The connection we were looking
for is then the following.

Property 7 (Continuity). D is continuous.

Intuitively, the property above says that if two pairs of points are close to each
other in the product metric, then D does not rip them apart in R.

The following is a straightforward and intuitive consequence of D being con-
tinuous, and it is how we will employ continuity to obtain future the results.

Observation 5. Let D satisfy the continuity property. Assume that a sequence
of agreeable points {vi}∞i=1 converges to v and a sequence of admissible points
{wi}∞i=1 converges to w. Then the sequence

{D(vi,wi)}∞i=1

converges to D(v,w).

Proof. For any ε > 0 we are tasked with finding j such that |D(vi,wi) −
D(v,w)| < ε for all i > j. Since D is continuous, for any ε > 0 there is δ > 0
such that whenever (

[d(vi,v)]p + [d(wi,w)]p
) 1

p

< δ

we have |D(vi,wi)−D(v,w)| < ε. Now we simply select j so that [d(vi,v)]p +
[d(wi,w)]p < δp for all i > j. This is always possible since {vi}∞i=1 converges to
v and {wi}∞i=1 converges to w. ut
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Since we operate in a metric space, we can define that a subset of points X
is compact if every sequence that can be constructed from its elements has a
convergent subsequence and the limit point of this convergent subsequence lies
in this subset. In other words, it has Bolzano–Weierstrass property, which in
metric spaces is equivalent to compactness.

Observation 6. If V and W are compact, and D satisfies the continuity prop-
erty then a representative point exists.

Proof. Consider the set of all real numbers D(v,w) such that v ∈ V and w ∈W .
This set is bounded from below so it has also the greatest lower bound (a basic
property of real numbers). Let us denote it b.

Now, for every ε > 0 there are v ∈ V and w ∈W such that

ε+ b > D(v,w) ≥ b,

otherwise b would not be the greatest lower bound. Therefore, we can construct a
sequence {D(vi,wi)}∞i=1 that converges to b. Now, due to the compactness of V
the sequence {vi}∞i=1 has a convergent subsequence, say {vij}∞j=1. Let {wij}∞j=1

be the corresponding sequence in W , which is also compact, so it has also a
convergent subsequence. Let w ∈ W be its limit point and let v ∈ V be the
limit point of {vij}∞j=1. Then due to Observation 5

D(v,w) = b

so v must be a representative point. ut

Looking now at the statement of Theorem 1 on Page we can replace the re-
quirement for existence of a representative point by requiring compactness of V
and W , and asking D to satisfy the continuity property.

7 Convergence

The following property will be needed to prove that a representative point can
be reached by an iterative process.

Property 8 (Four Points). Let w,u ∈W and v ∈ V . Then

D(π̂V (w),u) ≤ D(w,u) +D(v,u).

The four–point property is illustrated in Figure 13.
Thus far we had one property that linked the concept of divergence D and

the metric topology given by d; it was the continuity property. Here we provide
another one, which somewhat goes in the opposite direction.

Property 9 (Connectivity). If {D(vi,v)}∞i=1 converges to zero then so does
{d(vi,v)}∞i=1.
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Naturally, the property above implies that if {D(vi,v)}∞i=1 converges to zero
then v is the limit point of {vi}∞i=1. We will use this in the following theorem.

Theorem 2 (Convergence). Let D be such that it satisfies the projection and
conjugated projection properties, the Pythagorean properties for both admissible
and agreeable points, and the consistency, convexity, continuity, four–point and
connectivity properties. Let v0 ∈ V . Define a sequence {vi}∞i=0 recursively by
vi+1 = π̂V (πW (vi)). If V and W are compact then the sequence {vi}∞i=0 con-
verges to a fixed point.

Proof. First notice that

D(vi, πW (vi)) ≥ D(πW (vi), π̂V (πW (vi))) ≥

≥ D(π̂V (πW (vi)), πW (π̂V (πW (vi))))

so the sequence of non–negative real numbers D(vi, πW (vi))
∞
i=0 converges and its

limit point exists (the closed interval [0, D(v0, πW (v0))] is compact in R equipped
with the standard metric). We will denote this limit information divergence λ.

Furthermore, due to the compactness of V and W the sequences {vi}∞i=0 and
{πW (vi)}∞i=0 have both a convergent subsequence with a corresponding limit
point, we denote these limits points v ∈ V and w ∈ W respectively. Therefore,
by Observation 5,

D(v,w) = λ.

What we need to prove at this stage is that the whole sequence {vi}∞i=0, not
just its subsequence, converges to v. We will do this considering Figure 14.

By the four–point property

D(vi,w) ≤ D(πW (vi−1),w) +D(v,w).

and by the Pythagorean property for admissible points

D(πW (vi),w) +D(vi, πW (vi)) ≤ D(vi,w).

Since
D(vi, πW (vi)) ≥ D(v,w)

it follows that
D(πW (vi),w) ≤ D(πW (vi−1),w).

However, we already know that a subsequence of {πW (vi)}∞i=0 converges to w,
so this means that {D(πW (vi),w)}∞i=0 converges, by Observation 5, to D(w,w),
which is by the consistency property 0. Finally, using the connectivity property,
the whole sequence {πW (vi)}∞i=0 must converge to w.

By the convexity property D(πW (vi),w) ≥ D(π̂V (πW (vi)),v) for all i so
also

{D(vi,v)}∞i=1

converges to zero which in turn means, making the same argument as above,
that {vi}∞i=0 converges to v as desired.
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However, in order to apply the convexity property above, we need to first
establish that π̂V (w) = v. For a contradiction let us assume that v 6= π̂V (w).
By the Pythagorean property for agreeable points

D(π̂V (w), π̂V (wi)) +D(π̂V (wi),wi) = D(π̂V (w),wi),

for all i. Since {wi}∞i=1 converges to w, and {vi}∞i=1 has a subsequence converging
to v (so we focus only on it), and by Observation 5, we can also write

D(π̂V (w),v) +D(v,w) = D(π̂V (w),w).

By the assumption and the consistency property D(π̂V (w),v) > 0, so we have
that D(v,w) < D(π̂V (w),w). But this is not possible, a contradiction.

Similarly we can establish a contradiction with the uniqueness of the D–
projection should w 6= πW (v) utilising the Pythagorean property for admissible
points. Therefore v = π̂V (πW (v)) and v is a fixed point. ut

Finally, considering Theorem 1 we may claim that the fixed point from the
theorem above is also a representative point.

The algorithm (and in fact the idea of the proof presented above) is due to
Csiszár and Tusnády [8], who developed it for a particular information diver-
gence and it is known as an alternating minimisation procedure. The algorithm
was then generalised many times in the literature, see e.g. [6], and the version
above can be considered as a further step. Nevertheless, it is still the same idea
developed in 1984.

8 Conclusion

We have now achieved the goal as initially stated; we have introduced informa-
tion geometry without actually specifying the exact nature of admissible and
agreeable points we worked with. However, the paper is far from finished. First,
in the appendix the classical setting will be formally established and staples
of inductive logic; discrete probability distributions and cross–entropy, will be
discussed.

Second, as this aspired to be an actual generalisation of information geome-
try, the future development should be aimed to find a non–trivial and different
formalisation of the intuitive concept than the one from the appendix, which
is one usually used in inductive logic. This is exciting as one could hope to re-
cover information geometry on mathematical objects originally meant to capture
something else, leading to entirely new connections and applications.

Finally, we should also admit that the results presented here were somewhat
easy; we placed in enough properties so that the proofs of the desired results
went through. The hard job is the opposite: What properties are necessary?
This question remains open for now.
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Appendix

“One could not see the forest for the trees.”

A Common Proverb

In this paper we have accumulated a large number of properties that we
require from an information divergence D and from the sets of agreeable and
admissible points. Naturally we should ask the following question: Is it actually
possible to satisfy them all? In this section we show particular examples that
satisfy all the properties, but we will need some additional notions to define
them.
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Obdurate Committee

“The point is that we are not ignoring the dynamics, and we are not
getting something from nothing, (. . . ) for these all circumstances that
are not under the experimenter’s control must, of necessity, be irrelevant.
(. . . ) Solution by the Maximum Entropy Principle is so unbelievably
simple just because it eliminates those irrelevant details right at the
beginning of the calculation by averaging over them.”

Edwin T. Jaynes, [10]

Here we consider an obdurate committee who stubbornly refuses to iterate
the process v1 = π̂V (πW (v0)). This will help us to further illustrate the setting,
toy with it, but foremost illustrate some singular points of information geometry.

First, we postulate existence of the most uninformative point u in the set
of agreeable points V . Second, the committee finds πW (u), a unique agreeable
point that has the smallest D–divergence from u. If we wanted to represent W
by a single point, this is the most natural option as, in respect to D, it has the
least added ‘information’ to it among the agreeable points.

This generalises the concept of the famous most entropic point; we recover
the usual concept if we choose a specific information divergence D and a specific
concept of the point. We will elaborate the details later in this appendix. We only
mention that the committee is not ignoring the dynamics of the set of admissible
points W by selecting that single point there as well as the experimenter is not
doing so in the citation above. If the dynamics were laboriously worked out, we
would have obtained this solution anyway.

Let us denote πW (u) by MED(W ), and call it the most entropic point in
W (in respect to D). Now, the committee wishes to find the agreeable point (if
it is not already and agreeable admissible point). To that end, π̂V (MED(W ))
is picked, and we denote O(W ) = {π̂V (MED(W ))} the singleton containing it.
An illustration is in Figure 6.

This obdurate point need not be a fixed point; and even less a representative
point, considering Observation 2. It would indeed be a stubborn committee not
to iterate the process further, but be content with it. The committee would argue
that the advantage of O is that it contains a single point. We would point out that
O(W ) 6= W∩V = ∆(W ), ifW∩V 6= ∅ andW∩V has at least two elements (given
D satisfies the consistency property), as shown in Observation 1. Nevertheless,
starting the whole iteration process from the most uninformative point appears a
well justified idea that indeed lead to a unique point as investigated in Section 7.

Finally, let us point out the following obvious statements.

Observation 7. If W is a singleton, then

O(W ) = ∆(W ).

Observation 8. If W ⊆ V , then

O(W ) ⊆ ∆(W ).

The prior follows from Property 3, while the latter from Observation 1.
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Points

To provide an actual example of what was discussed in the paper, we start with
the J–dimensional Euclidean space, which is a set of all ordered J–tuples

v = (v1, . . . , vJ),

where every vj is a real number. In other words, v ∈ RJ . A (J − 1)–dimensional
probabilistic simplex DJ , J ≥ 2, is a subspace of the J–dimensional Euclidean
space defined as those v ∈ RJ that satisfy

J∑
j=1

vj = 1.

We will confine ourselves to the case when vj > 0, for all 1 ≤ j ≤ J , to avoid
any pathological cases, which makes DJ an open set. Such a defined discrete
probability distribution v could perhaps represent a probabilistic opinion that
an individual may have about the world, and thus it plays a central role in
inductive logic and uncertain reasoning [13, 15]. More recently, in [4] they have
been used to represent results of individual medical studies.

We say that a subset W of points in RI is convex if for any two v,w ∈ W
we have that also

(λ · v1 + (1− λ) · w1, . . . , λ · vI + (1− λ) · wI) ∈W ,

for all λ ∈ [0, 1]. We say that a subset W of points in RI is closed if the limit
point of every convergent sequence constructed from the elements of W has its
limit inside W , in respect to the standard Euclidean metric.

Now, let us consider a closed convex set of points

W ⊆ DJ × . . .× DJ︸ ︷︷ ︸
n

.

Note that I = Jn (in the definition of convexity above) and w ∈ W is of the
form w = (v(1), . . . ,v(n)), where each v(i) ∈ DJ is a probability distribution
admissible by the member i of a group of n individuals. This set W will be an
example of a set of admissible points discussed earlier in the paper.

Finally, let
V ⊆ DJ × . . .× DJ︸ ︷︷ ︸

n

be such that in each v ∈ V all members are in agreement; v = (v(1), . . . ,v(n)),
where v(1) = . . . = v(n). This set V is not closed (because DJ is not), but we

can fix a sufficiently small ε > 0 and ask every v
(i)
j > ε, 1 ≤ i ≤ n, 1 ≤ j ≤ J . A

suitable ε exists (in a sense that W ⊆ V must be possible), since W is assumed
closed. Such a set V will be an example of a set of agreeable points discussed
earlier in the paper.
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Clearly, it could be that there are some agreeable points in W , but V and W
could be as well disjoint. In any case, W is assumed non–empty, while V is non–
empty by definition. Both W and V are defined closed and bounded, and hence
they are both compact. Note that compactness was required in Observation 6
and Theorem 2.

Divergences

After we have introduced the points, let us now define a divergence from one
point to another. In [5], the following divergence from v ∈ V to w ∈ W based
on the Rényi entropy was defined:

Dr(v,w) =
1

n

Jn∑
j=1

[(wj)
r − (vj)

r − r(wj − vj)(vj)r−1],

where 2 ≥ r > 1. For r = 2 this divergence becomes the well known squared
Euclidean distance

E(v,w) =
1

n

Jn∑
j=1

(vj − wj)
2,

exceptionally a symmetric divergence. The proof that the set of representative
points ∆Dr (W ) based on the Rényi entropy is well defined is in [1].

Another way to define the divergence D from v ∈ V to w ∈W is to take the
Kullback–Leibler divergence (also known as cross–entropy)

KL(v,w) =
1

n

Jn∑
j=1

w
(i)
j log

w
(i)
j

vj
.

A limit theorem relating the set of representative points ∆Dr (W ) based on the
Rényi entropy to the set of representative points∆KL(W ) based on the Kullback–
Leibler divergence has been proven in [5];

∅ 6= lim
r↘1

∆Dr (W ) ⊆ ∆KL(W ).

Whether or not the above holds with equality is an open problem.
The proofs that the divergences defined above satisfy all Properties 1 to 9

discussed in this paper are scattered in [1] and [2], and they are all special cases
of a general convex Bregmann divergence [7].

What we discussed in this paper now gives us

∆Dr (W ) = ΘDr (W ), and ∆KL(W ) = ΘKL(W ),

the representative and fixed points are the same points, and we can get a repre-
sentative point by iterating projections and conjugated projections.
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Discussion

The technical nature of this appendix obscured how natural and simple these
examples actually are. We will mention some singular points in what follows.

Regardless on which of the above mentioned divergences is taken for D, the
conjugated D–projection of an admissible point w = (w(1), . . . ,w(n)) ∈ W to
the set of agreeable points (v, . . . ,v︸ ︷︷ ︸

n

) ∈ V in fact gives

v =
( 1

n

n∑
i=1

w
(i)
1 , . . . ,

1

n

n∑
i=1

w
(i)
J

)
.

So we have here only the ordinary arithmetic mean applied to J coordinates re-
spectively. In the literature this operator is known as the linear pooling operator,
see [9]. It is a common choice of representing different opinions w(1), . . . ,w(n) ∈
DJ of n individuals as a single point in DJ , a natural agreeable point.

Defining the most uninformative point u = (v, . . . ,v︸ ︷︷ ︸
n

) ∈ V using the uniform

probability distribution

v =
( 1

J
, . . . ,

1

J

)
∈ DJ ,

MEKL(W ), defined as the KL–projection of u into W , is the usual most entropic
point in W . It is defined as that w that maximises the Shannon entropy

−
Jn∑
j=1

wj logwj .

An obdurate committee would then take this most entropic point and find the
conjugated KL–projection in the set of agreeable points V , which we now know
to be equivalent to applying a linear pooling operator, and be content with it.

We suggest that a rational committee would iterate the whole process end-
lessly until a representative point in ∆KL(W ) = ΘKL(W ) ⊆ V is reached. A
combinatorial argument in favour of using ∆KL(W ) in a specific context was
presented in [3].

Should there be only one individual, n = 1, thenW = ∆KL(W ) = ΘKL(W ) ⊆
V , so there would be no need to iterate the process as MEKL(W ) would be
trivially, see Observation 8, a fixed point. This would correspond to the classical
most entropic solution when there are no conflicting sources of information.
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Figures

admissible points

agreeable points

points

agreeable admissible points

Fig. 1. An illustration of the set of all points.

w

v
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V

∆(W )

points

D(v,w)

Fig. 2. An illustration of the representative points.
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πW (v)
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D(v, πW (v))

Fig. 3. An illustration of the D–projection.
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D(π̂V (w),w)

Fig. 4. An illustration of the conjugated D–projection.
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v = π̂V (πW (v))

W
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Fig. 5. An illustration of the fixed points.
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W

V
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π̂V

πW

MED(W )

{v} = O(W )u

Fig. 6. An illustration of an obdurate committee.

points

V

D(v, π̂V (w)) +D(π̂V (w),w) = D(v,w)

w

π̂V (w)

v

Fig. 7. An illustration of the Pythagorean property for agreeable points.

α

a

b

c

if α = 90◦ then a2 + b2 = c2

Fig. 8. How squares behave in the Euclidean geometry.
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πW (v)

v

w
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W

D(v, πW (v)) +D(πW (v),w) ≤ D(v,w)

Fig. 9. An illustration of the Pythagorean property for admissible points.
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α

if 90◦ ≤ α ≤ 180◦ then a2 + b2 ≤ c2

Fig. 10. How squares behave in the Euclidean geometry.
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D(w,u) ≥ D(π̂V (w), π̂V (u))

Fig. 11. An illustration of the convexity property.



M. Adamč́ık
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Fig. 12. An illustration of the proof for Theorem 1.
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D(π̂V (w),u) ≤ D(w,u) +D(v,u)

Fig. 13. An illustration of the four points property.
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Fig. 14. An illustration of the proof of Theorem 2.


