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Abstract. We position ongoing research aimed at developing a general
framework for structured spatio-temporal learning from multimodal human
behavioural stimuli. The framework and its underlying general, modular
methods serve as a model for the application of integrated (neural) visuo-
auditory processing and (semantic) relational learning foundations for appli-
cations (primarily) in the behavioural sciences.
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High-level perceptual sensemaking of multimodal human behavioural stimuli is
foundational to diverse cognitive assistive technologies and autonomous percep-
tion & interaction systems [3, 4]. Multimodal sensemaking, at a level of descrip-
tive and analytical complexity that matches cognitive human performance and
expectations, is also crucial for the development of next-generation AI technolo-
gies and artefacts —concerned with agency, assistance and autonomy— where
human-centred considerations of personalisation, normative behaviour, explana-
tion, empathy, trust, responsibility are at the core.

Multimodal Learning: A Neurosymbolic Foundation. In this position
statement, we summarise aspects of ongoing research in ‘Cognitive Vision and
Perception’ [4] aimed at developing a general framework for structured spatio-
temporal learning from multimodal human behavioural stimuli, e.g., consisting
of dynamic visuospatial and auditory features. With an emphasis on formali-
sations of spatio-linguistically rooted relations of space, time and motion, the
framework is geared towards supporting high-level learning of deep semantic
relational spatio-temporal structure —by means of inductive generalisation—
from low-level stimuli (typically) emanating from embodied human interactions
in everyday naturalistic settings. At the crux of the proposed framework are gen-
eral and modularly developed foundational spatio-temporal learning methods
intended to serve as a neurosymbolic model for with integrated (neural learn-
ing based) visuo-auditory processing and (semantics based) relational learning
synergistically serving as a foundational backbone in diverse applications such
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Fig. 1. Relational Spatio-Temporal Structure of Embodied Multimodal Interaction

as behavioural research in psychology (e.g., visual perception), studies in multi-
modal interaction, HRI and social robotics.

Relational Space-Time Generalisation: A Case for Commonsense
Relational learning by inductive generalisation in the context of Aritificial Intel-
ligence (AI) and Machine Learning (ML) is a well-established area of research.
Beyond the specific context of Al and ML, the topics of knowledge discovery,
explanatory reasoning, hypothesis formation, and decision making assume a far
broader significance from philosophical, logical, and cognitive perspectives.

Our approach to relational generalisation from multimodal observations —in so
far as this position statement is concerned— is driven by inductive learning based
on a logical / knowledge representation and reasoning approach under constraint
logic and answer set learning settings. At the core of the multimodal learning
framework are commonsense characterisations of space and motion primitives
suited for the grounding of embodied interaction specific multimodal interac-
tional features pertaining to people, objects, gaze, body pose, visual fixation
measured via eye-tracking, speech / auditory features such as those relevant to
intonation (Fig. 1). For relational (space-time) learning [11], in scope are sys-
tems such as ILASP [8], Inspire [9], Popper [5], ALEPH [10]. From an applied
viewpoint, the ongoing research is motivated by demonstrating the significance
and value of (inductive) generalisation as a means to learn the relational spatio-
temporal structure underlying multimodal data pertaining to embodied human
interactions in diverse empirical research contexts where the ability to induce
high-level, semantic, declaratively explainable behaviour models is of interest.
In essence, the learnt behavioural models pertain to some aspect of everyday
human activity and interaction.
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