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Abstract. The theory of partial information decomposition (PID) is
an extension of classical information theory that allows to describe how
information about some target variable is distributed over a range of
source variables. In this way PID distinguishes fundamental types of un-
certainty reduction. In the simplest case of two information sources the
total reduction in our uncertainty about the target may be partly re-
dundant to both information sources, partly unique to one of them, and
partly synergistic, i.e. some aspect of our uncertainty about the target
may only be reduced if we have access to both information sources at
the same time. The problem of disentangling these components neces-
sarily arises in any inductive inference with more than one ”premise”
(information source, observation, etc.). We argue, therefore, that PID
theory is of great relevance to the foundations of inductive inference in
particular as it pertains to the allocation of epistemic value over multiple
information sources. Our formulation of the theory draws from principles
of mereology and formal logic thereby placing PID on the foundation of
two of the most elementary concepts of human thought: the part-whole
relationship and the relation of logical implication.
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The quest for a decomposition of information in terms of unique, redundant, and
synergistic components goes back to the 1950s, but it was only in the seminal
2010 paper by Williams and Beer [6] that the mathematical structure of the
problem was described in its entirety and the first full solution was proposed.
Since then there has been a flurry of alternative approaches aiming to overcome
some of the shortcomings of the original solution (for instance [1, 4, 2]). However,
no consensus could be reached thus far. Doing so would be of wide-ranging
practical significance since problems of the PID type are ubiquitous in virtually
all fields of quantitative research. In neuroscience, for instance, PID pertains
to the question of how stimuli are encoded in a network of multiple neurons.
Do the neurons encode the stimulus synergistically? Or are differerent aspects
of the stimulus encoded uniquely by different neurons? How redundant is the
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encoding? In machine learning one may ask how information about the output
is allocated over different potential features. This analysis can then be used for
efficient feature selection [7].

It should be noted that the problem soon becomes very complex as a larger
number of information sources are considered because ever more complicated
types of information arise (think for example of information shared by some
variables yet at the same time synergistic with respect to some other variables).
In order to deal with this complexity, our own work focuses, on the one hand,
on the mathematical structure and conceptual foundations of PID [3], and on
the other, on concrete numerical measures of the different PID components [5].
In the former line of research we show how partial information decomposition
can be fully explained in terms of parthood relationships between information
contributions of the source variables about the target variable. In doing so, we
arrive at a unique solution to the hierarchical organization of information con-
tributions that must be respected if the information decomposition is to embody
the intuitive notion of one entity being part of another one. In the second line
of research we establish a connection between PID theory and formal logic. In
particular, we describe how the different PID components can be measured by
the local information provided by a special class of statements about the ob-
served values of the information sources: the class of statements with monotonic
truth-tables. The defining feature of such statements is that changing the truth
value of an atomic statement from false to true, cannot make the statement false
if it was previously true.

Here, we would like to suggest that PID could play an important role in
the analysis of inductive inferences in the sense of empirical / statistical in-
ference from data to hypothesis. Especially from a Bayesian perspective, one
may consider the target variable as representing some parameter Θ of interest
and the information sources as multiple observations or experimental outcomes
X1, . . . , Xn (the ”premises” of the inductive inference). Our goal is to use these
observations to reduce our uncertainty about the parameter. In the most simple
case of two observations, PID aims to decompose the joint mutual information
into the four basic components of redundancy, uniqueness, and synergy:

I(X1, X2 : Θ) = Red(X1, X2 : Θ) + U(X1 : Θ) + U(X2 : Θ) + Syn(X1, X2 : Θ) (1)

Viewed in this light, PID distinguishes between different types of uncertainty
reduction and, importantly, allows us to describe these types in a quantitative
way. Is our reduction in uncertainty about Θ uniquely due to a particular obser-
vation? To what degree does it result from synergistically combining information
obtained from multiple observations? Perhaps, our uncertainty reduction is even
purely synergistic so that we cannot learn anything about the parameter by look-
ing at an individual observation in isolation. Or is some part of our uncertainty
reduction redundant to multiple observations? By answering all possible ques-
tions of this nature, PID provides a detailed picture of the epistemic structure
of inductive inferences with multiple premises. It tells us which observations, or
collections of observations, matter to what degree when it comes to reducing our
uncertainty about the parameter.
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